numpy
Classes:
-
NpyDumpArgs–Arguments for dumping a NumPy array.
-
NpyLoadArgs–Arguments for loading a NumPy array.
-
NpySerializer–Serializer for NumPy arrays using the native .npy format.
npy_serializer
module-attribute
npy_serializer = NpySerializer()
NpySerializer with default settings.
NpyDumpArgs
Bases: TypedDict
Arguments for dumping a NumPy array.
NpyLoadArgs
Bases: TypedDict
Arguments for loading a NumPy array.
Attributes:
-
mmap_mode(Literal['r+', 'r', 'w+', 'c'] | None) –If not None, then memory-map the file, using the given mode.
mmap_mode
instance-attribute
mmap_mode: Literal['r+', 'r', 'w+', 'c'] | None
If not None, then memory-map the file, using the given mode.
See numpy.memmap for a detailed description of the modes. A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory.
NpySerializer
NpySerializer(
*,
dump_args: NpyDumpArgs | None = None,
load_args: NpyLoadArgs | None = None
)
Bases: Serializer[ndarray]
Serializer for NumPy arrays using the native .npy format.
This serializer leverages NumPy's built-in numpy.save and numpy.load functions to efficiently serialize and deserialize numpy.ndarray objects.
Parameters:
-
(dump_argsNpyDumpArgs | None, default:None) –Optional arguments passed to numpy.save.
-
(load_argsNpyLoadArgs | None, default:None) –Optional arguments passed to numpy.load.
Methods:
-
deserialize_config–Deserialize the configuration from a JSON string.
-
deserialize_data–Deserialize the given DataFrame.
-
serialize_config–Serialize the configuration to a JSON string.
-
serialize_data–Serialize the given DataFrame.
Attributes:
-
content_types(tuple[str, ...]) –The content types that the serializer uses.
content_types
class-attribute
instance-attribute
The content types that the serializer uses.
Used to get serializers by content type in the registry.
deserialize_config
deserialize_config(config: str) -> C
Deserialize the configuration from a JSON string.
deserialize_data
deserialize_data(content: SerializedData) -> ndarray
Deserialize the given DataFrame.